Crystal structure of hexa-kis-(dmpu)-di-μ2-hydroxido-dialuminium tetraiodide dmpu tetra-solvate [dmpu is 1,3-di-methyl-tetra-hydro-pyrimidin-2(1H)-one]: a centrosymmetric dinuclear aluminium complex containing AlO5 polyhedra. - PDF Download Free (2024)

research communications

ISSN 2056-9890

Crystal structure of hexakis(dmpu)-di-l2-hydroxidodialuminium tetraiodide dmpu tetrasolvate [dmpu is 1,3-dimethyltetrahydropyrimidin-2(1H)-one]: a centrosymmetric dinuclear aluminium complex containing AlO5 polyhedra

Received 12 June 2015 Accepted 2 July 2015

Daniel Lundberga* and Krzysztof Lyczkob

Edited by M. Weil, Vienna University of Technology, Austria

a Department of Chemistry and Biotechnology, PO Box 7015, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden, and bInstitute of Nuclear Chemistry and Technology, Dorodna 16, PL-03-195 Warsaw, Poland. *Correspondence e-mail: [emailprotected]

Keywords: crystal structure; group 13 metals; five-coordination; dmpu; space-demanding solvent CCDC reference: 1410078 Supporting information: this article has supporting information at journals.iucr.org/e

The structure of the title compound, [Al2(OH)2(C6H12N2O)6]I44C6H12N2O (systematic name: di-2-hydroxido-bis{tris[1,3-dimethyltetrahydropyrimidin2(1H)-one-O]aluminium} tetraiodide 1,3-dimethyltetrahydropyrimidin-2(1H)one tetrasolvate), is composed of two Al(C6H12N2O)3 moieties linked into a centrosymmetric dinuclear unit by a pair of bridging hydroxide ions. The aluminium cations show a distorted trigonal bipyramidal AlO5 coordination environment formed only by monodentate ligands. The Al—O bond lengths are ˚ (mean bond length = 1.818 A ˚ ). The nonin the range 1.789 (2)–1.859 (2) A coordinating iodide anions compensate the charge of the complex cation. The remaining solvent molecules and the iodide counter-anions interact with the complex cation by weak non-classical C—H I and C—H O hydrogen bonds.

1. Chemical context The solvent ligand N,N0 -dimethylpropyleneurea (dmpu; IUPAC name: 1,3-dimethyltetrahydropyrimidin-2(1H)-one, C6H12N2O) is known to be space-demanding upon coordination. This has been shown for several different metal ions which have a lower coordination number than the corresponding hydrates (Lundberg, 2006; Lundberg et al., 2010). In the boron group (group 13), the trivalent metal ions have previously been studied in dmpu solution and the solid state,

with reported crystal structures for trichloridobis(dmpu)thallium(III) (Carmalt et al., 1996) and tribromidobis(dmpu)indium(III) (Topel et al., 2010). In the case of dmpu-solvated gallium(III) bromide, the gallium cation was determined to be five-coordinate in solution but crystallization was not successful despite of repeated attempts (Topel et al., 2010). The title compound was prepared in an attempt to reveal the Acta Cryst. (2015). E71, 895–898

doi:10.1107/S2056989015012785

895

research communications dmpu coordination for the last remaining naturally occurring trivalent group 13 metal ion, aluminium(III). Since both chloride and bromide ions are more prone to form aluminium complexes, the iodide salt was chosen as a starting material.

2. Structural commentary The asymmetric unit of the title structure comprises one Al(dmpu)3 moiety, two dmpu solvent molecules and two iodide counter anions. The dinuclear cationic aluminium complex (Fig. 1) is generated by inversion symmetry and contains two five-coordinate aluminium cations, in which each cation is coordinated by the oxygen atoms of three dmpu ligand molecules and two 2-bridging hydroxide ions, completing an AlO5 coordination sphere. The Al—O bond lengths in the Al2(2-OH)2 bridge are 1.804 (2) and ˚ , while the Al—O bonds to the dmpu ligand mol1.859 (2) A ˚ , respectively. ecules are 1.789 (2), 1.792 (2), and 1.846 (2) A ˚ from The two aluminium cations are separated by 2.883 (1) A each other. The Al—O—C angles for the coordinating dmpu ligand molecules lie in the range of 144.0 (2) to 154.7 (2) . The dmpu ligand molecules are all essentially flat with the exception of the middle propylene carbon atom which is bent out of the plane with a dihedral angle of ca 50 .

Table 1 ˚ , ). Hydrogen-bond geometry (A D—H A i

O6—H6 O4 C5—H5B I2 C6—H6B O5ii C12—H12A O1 C12—H12B I1iii C14—H14A I2iv C17—H17B I1iv C16—H16A I1iii C24—H24A O3i C28—H28B I2v C30—H30A O5vi

D—H

H A

D A

D—H A

0.73 (5) 0.98 0.98 0.98 0.98 0.99 0.98 0.99 0.98 0.99 0.98

1.91 (5) 3.01 2.21 2.59 3.09 3.15 3.05 3.11 2.57 3.09 2.57

2.625 (3) 3.987 (3) 3.190 (4) 3.561 (4) 4.051 (3) 4.070 (4) 4.015 (4) 3.932 (4) 3.482 (5) 3.981 (4) 3.404 (5)

167 (5) 172 174 173 167 156 169 141 154 150 143

Symmetry codes: (i) x; y þ 1; z þ 1; x 12; y þ 32; z þ 12; (iv) x 1; y; z; x þ 2; y þ 1; z þ 2.

(ii) (v)

x þ 1; y þ 1; z þ 2; x þ 12; y þ 32; z þ 12;

(iii) (vi)

˚ to one of the nonO—H O hydrogen bond of 2.625 (3) A coordinating dmpu ligand molecules, with an H O—C angle for this interaction of 134.8 (17) . The other non-coordinating dmpu molecule is stabilized by a much weaker O H—C ˚ . Other O H—C interaction interaction of 3.190 (5) A ˚ . The between the moieties range from 3.404 (5)–3.561 (4) A remaining positive charges on the aluminium atoms in the complex are compensated by the presence of non-coordin-

3. Supramolecular features In the crystal packing, the complex cations are arranged in rods parallel to [001] with the counter-anions situated between the rods (Fig. 2). The hydroxide ion forms a medium-strength

Figure 1 The dinuclear complex cation in the title compound, with displacement ellipsoids drawn at the 50% probability level. The hydrogen bonding from the bridging hydroxide group to the O atom (O4i) of one noncoordinating dmpu molecule is indicated with a dashed line. Nonhydroxide H atoms have been omitted and the symmetry-related half of the complex has been shaded for clarity. [Symmetry code: (i) x, 1 y, 1 z.]

896

Lundberg and Lyczko

[Al2(OH)2(C6H12N2O)6]I44C6H12N2O

Figure 2 The crystal packing of the title structure in a view along [001]. Acta Cryst. (2015). E71, 895–898

research communications Table 2 Experimental details. Crystal data Chemical formula Mr Crystal system, space group Temperature (K) ˚) a, b, c (A ( ) ˚ 3) V (A Z Radiation type (mm1) Crystal size (mm) Data collection Diffractometer

Absorption correction

Figure 3 High-resolution photograph of another, partially crystalline sample of the title compound. Multiple exposures were stacked for an increased depth of field.

ating iodide anions, which interact with the cationic complex by weak I H—C hydrogen bonds in the range 3.932 (4)– ˚ (Table 1). 4.070 (4) A

Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin /)max (A Refinement R[F 2 > 2(F 2)], wR(F 2), S No. of reflections No. of parameters H-atom treatment ˚ 3) max, min (e A

[Al2(OH)2(C6H12N2O)6]I4 4C6H12N2O 1877.33 Monoclinic, P21/n 100 13.9120 (2), 22.6152 (2), 14.4875 (3) 116.331 (2) 4085.16 (12) 2 Cu K 12.72 0.20 0.16 0.14

Agilent SuperNova Dual Source diffractometer with an Eos detector Multi-scan (CrysAlis PRO; Agilent, 2014) 0.411, 1.000 75993, 7114, 6779 0.040 0.593

0.030, 0.078, 1.10 7114 456 H atoms treated by a mixture of independent and constrained refinement 1.20, 1.13

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and DIAMOND (Crystal Impact, 2001).

4. Database survey The Cambridge Structural Database (Version 2015; Groom & Allen, 2014) lists 615 structures with an AlO4 coordination polyhedron and 387 structures with an AlO6 polyhedron, but only 46 with an AlO5 polyhedron. Of these 46, three contain 2-hydroxido bridges, including two polynuclear structures (Abrahams et al., 2002; Murugavel & Kuppuswamy, 2006) and a trinuclear structure with an AlO3N2–AlO5–AlO3N2 motif. Another trinuclear complex with an AlO4–AlO5–AlO4 motif, albeit without hydroxide bridges (Pauls & Neumu¨ller, 2000), and two different mononuclear, five-coordinate tetrahydrofuran (thf) solvates have been reported (Karsch et al., 2012). More than 50 examples of dimeric complexes with hexacoordinate aluminium ions with similar bridging between aluminium have been reported. Urea solvated aluminium perchlorate was structurally determined by Mooy et al. (1974) as a hexacoordinate, hom*oleptic complex. hom*oleptic hexacoordination is also found in other common, non-aqueous O-donor solvents, including dimethylsulfoxide (dmso) solvated aluminium chloride (Bostro¨m et al., 2003), hexaisothiocyanatoaluminium (Gumbris et al., 2012), iodide (Molla-Abbassi et al., 2003), and perchlorate (Chan et al., 2004), as well as N,N-dimethylformamide (dmf) solvated aluminium hexachloridotechnate chloride (Benz et al., 2015), perchlorate (Suzuki & Ishiguro, 1998), and tribromide (Bekaert et al., 2002), and the N,NActa Cryst. (2015). E71, 895–898

dimethylacetamide (dma) solvated aluminium perchlorate (Suzuki & Ishiguro, 2006). One hom*oleptic, tetracoordinate aluminium ion has been reported by Engesser et al. (2012) with an anionic O-donor ligand.

5. Synthesis and crystallization The title compound was prepared by dissolving anhydrous aluminium(III) iodide (Sigma–Aldrich) in distilled dmpu in a glass vial, and subsequently heated in an oil bath to approximately 323 K, and then allowed to cool while still in the oil bath. After cooling to room temperature, the sample was refrigerated (277 K) for several weeks to allow for crystal growth. The presence of hydroxide ions in the title compound was most likely caused during preparation of the mother liquor. It appears possible that with additional precautions, a hydroxide-free compound might be obtained. A part of the solid was photographed in detail at ambient room temperature (Fig. 3), whereas attempts to study smaller crystals failed, presumably due to the hygroscopicity of the material.

6. Refinement Hydrogen atoms bonded to carbon atoms were placed in ˚ calculated positions with C—H = 0.98 (methyl) or 0.99 A Lundberg and Lyczko

[Al2(OH)2(C6H12N2O)6]I44C6H12N2O

897

research communications (methylene) and refined isotropically using a riding model with Uiso(H) equal to 1.5Ueq(C) or 1.2Ueq(C) for methyl and methylene hydrogen atoms, respectively. The hydrogen atom of the hydroxide group was located in a difference map and its position and Uiso value were freely refined. Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements We thank Ingmar Persson and Lars Eriksson for their interest in this work, and Harald Cederlund for obtaining the highresolution crystallophotography (HRCP) image.

References Abrahams, I., Bradley, D. C., Chudzynska, H., Motevalli, M. & Sinclair, R. A. (2002). J. Chem. Soc. Dalton Trans. pp. 259–266. Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Bekaert, A., Barberan, O., Kaloun, E. B., Rabhi, C., Danan, A., Brion, J. D., Lemoine, P. & Viossat, B. (2002). Z. Kristallogr. New Cryst. Struct. 217, 128–130. Benz, M., Braband, H., Schmutz, P., Halter, J. & Alberto, R. (2015). Chem. Sci. 6, 165–169. Bostro¨m, D., Clause´n, M. & Sandstro¨m, M. (2003). Acta Cryst. E59, m934–m935. Carmalt, C. J., Farrugia, L. J. & Norman, N. C. (1996). Main Group Chem. 1, 339–344.

898

Lundberg and Lyczko

[Al2(OH)2(C6H12N2O)6]I44C6H12N2O

Chan, E. J., Cox, B. G., Harrowfield, J. M., Ogden, M. F., Skelton, B. W. & White, A. H. (2004). Inorg. Chim. Acta, 357, 2365–2373. Crystal Impact (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Engesser, T. A., Hrobarik, P., Trapp, N., Eiden, P., Scherer, H., Kaupp, M. & Krossing, I. (2012). ChemPlusChem, 77, 643–651. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662– 671. Gumbris, E. G., Peresypkina, E. V., Virovets, A. V. & Cherkasova, T. G. (2012). Russ. J. Inorg. Chem. 57, 337–342. Karsch, M., Lund, H., Schulz, A., Villinger, A. & Voss, K. (2012). Eur. J. Inorg. Chem. pp. 5542–5553. Lundberg, D. (2006). PhD thesis, Swedish University of Agricultural Sciences, Sweden. Available for free at http://pub.epsilon.slu.se/ 1072/. Lundberg, D., Persson, I., Eriksson, L., D’Angelo, P. & De Panfilis, S. (2010). Inorg. Chem. 49, 4420–4432. Molla-Abbassi, A., Skripkin, M., Kritikos, M., Persson, I., Mink, J. & Sandstro¨m, M. (2003). Dalton Trans. pp. 1746–1753. Mooy, J. H. M., Krieger, W., Heijdenrijk, D. & Stam, C. H. (1974). Chem. Phys. Lett. 29, 179–182. Murugavel, R. & Kuppuswamy, S. (2006). Angew. Chem. Int. Ed. 45, 7022–7026. Pauls, J. & Neumu¨ller, B. (2000). Z. Anorg. Allg. Chem. 626, 270–279. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Suzuki, H. & Ishiguro, S.-I. (1998). Acta Cryst. C54, 586–588. Suzuki, H. & Ishiguro, S. (2006). Acta Cryst. E62, m576–m578. ¨ ., Persson, I., Lundberg, D. & Ullstro¨m, A.-S. (2010). Inorg. Topel, O Chim. Acta, 363, 988–994.

Acta Cryst. (2015). E71, 895–898

supporting information

supporting information Acta Cryst. (2015). E71, 895-898

[doi:10.1107/S2056989015012785]

Crystal structure of hexakis(dmpu)-di-µ2-hydroxido-dialuminium tetraiodide dmpu tetrasolvate [dmpu is 1,3-dimethyltetrahydropyrimidin-2(1H)-one]: a centrosymmetric dinuclear aluminium complex containing AlO5 polyhedra Daniel Lundberg and Krzysztof Lyczko Computing details Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Crystal Impact, 2001); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015). Di-µ2-hydroxido-bis{tris[1,3-dimethyltetrahydropyrimidin-2(1H)-one-κO]aluminium} tetraiodide 1,3dimethyltetrahydropyrimidin-2(1H)-one tetrasolvate Crystal data [Al2(OH)2(C6H12N2O)6]I4·4C6H12N2O Mr = 1877.33 Monoclinic, P21/n a = 13.9120 (2) Å b = 22.6152 (2) Å c = 14.4875 (3) Å β = 116.331 (2)° V = 4085.16 (12) Å3 Z=2

F(000) = 1912 Dx = 1.526 Mg m−3 Cu Kα radiation, λ = 1.54184 Å Cell parameters from 30242 reflections θ = 3.9–69.2° µ = 12.72 mm−1 T = 100 K Block, yellow 0.20 × 0.16 × 0.14 mm

Data collection Agilent SuperNova Dual Source diffractometer with an Eos detector Radiation source: SuperNova (Cu) X-ray Source Detector resolution: 16.0131 pixels mm-1 ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) Tmin = 0.411, Tmax = 1.000

75993 measured reflections 7114 independent reflections 6779 reflections with I > 2σ(I) Rint = 0.040 θmax = 66.0°, θmin = 3.7° h = −16→16 k = −26→26 l = −17→17

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.030 wR(F2) = 0.078 S = 1.10

Acta Cryst. (2015). E71, 895-898

7114 reflections 456 parameters 0 restraints Hydrogen site location: mixed

sup-1

supporting information H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0364P)2 + 6.5832P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.002 Δρmax = 1.20 e Å−3 Δρmin = −1.13 e Å−3

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

I1 I2 Al1 O1 O3 N9 N2 N1 C1 O2 N4 N8 C7 O4 C12 H12A H12B H12C N5 N6 N3 C17 H17A H17B H17C O5 C13 C5 H5A H5B H5C C6 H6A H6B H6C

x

y

z

Uiso*/Ueq

0.51772 (2) 0.53752 (2) 0.00668 (7) 0.13114 (16) −0.07158 (16) 0.7761 (2) 0.2309 (2) 0.3048 (2) 0.2217 (2) −0.00991 (17) −0.0161 (2) 0.2568 (2) −0.0504 (2) 0.11822 (19) 0.0803 (3) 0.0955 0.0694 0.1408 −0.2321 (2) −0.1056 (2) −0.1258 (2) −0.2762 (3) −0.2177 −0.3179 −0.3230 0.8410 (2) −0.1357 (2) 0.2954 (3) 0.3051 0.3505 0.2242 0.1414 (3) 0.1458 0.1446 0.0737

0.62910 (2) 0.68312 (2) 0.56180 (4) 0.58133 (9) 0.60555 (9) 0.63074 (12) 0.54816 (11) 0.55782 (11) 0.56185 (12) 0.61562 (9) 0.71546 (10) 0.49894 (13) 0.66163 (13) 0.54165 (10) 0.72256 (14) 0.6856 0.7544 0.7324 0.64829 (11) 0.69603 (11) 0.65501 (11) 0.59303 (17) 0.5654 0.6002 0.5760 0.54111 (12) 0.64952 (13) 0.57220 (15) 0.5362 0.6012 0.5889 0.55467 (15) 0.5933 0.5233 0.5518

0.13190 (2) 0.63215 (2) 0.52651 (7) 0.63291 (16) 0.57705 (16) 0.9445 (2) 0.7944 (2) 0.6791 (2) 0.7019 (2) 0.42976 (17) 0.41492 (19) 0.3074 (2) 0.3756 (2) 0.32421 (19) 0.5114 (2) 0.5506 0.5516 0.4969 0.4770 (2) 0.6212 (2) 0.2794 (2) 0.4251 (3) 0.4364 0.3511 0.4526 1.0114 (2) 0.5582 (2) 0.5773 (3) 0.5447 0.5840 0.5349 0.8202 (3) 0.8525 0.8681 0.7573

0.03025 (7) 0.03565 (8) 0.01970 (18) 0.0250 (5) 0.0240 (4) 0.0298 (6) 0.0251 (5) 0.0252 (5) 0.0218 (6) 0.0261 (5) 0.0230 (5) 0.0338 (7) 0.0194 (6) 0.0339 (5) 0.0277 (7) 0.042* 0.042* 0.042* 0.0259 (6) 0.0241 (5) 0.0245 (5) 0.0413 (9) 0.062* 0.062* 0.062* 0.0441 (6) 0.0201 (6) 0.0313 (7) 0.047* 0.047* 0.047* 0.0311 (7) 0.047* 0.047* 0.047*

Acta Cryst. (2015). E71, 895-898

sup-2

supporting information N7 N10 C20 H20A H20B C18 H18A H18B H18C C14 H14A H14B C8 H8A H8B C15 H15A H15B C27 H27A H27B C26 H26A H26B C3 H3A H3B C19 C16 H16A H16B C28 H28A H28B C25 C29 H29A H29B H29C C4 H4A H4B C2 H2A H2B C21 H21A H21B

0.2533 (2) 0.9575 (2) 0.3530 (3) 0.3949 0.3360 0.0012 (3) −0.0035 0.0288 0.0497 −0.3091 (3) −0.3642 −0.3457 −0.1683 (3) −0.2426 −0.1241 −0.2530 (3) −0.2094 −0.3066 0.8817 (3) 0.8970 0.8598 0.7926 (3) 0.8109 0.7257 0.4264 (3) 0.4940 0.4324 0.2059 (3) −0.1821 (3) −0.1429 −0.2260 0.9807 (3) 1.0326 1.0144 0.8574 (3) 0.6688 (3) 0.6521 0.6649 0.6168 0.3343 (2) 0.3370 0.3400 0.4107 (2) 0.4675 0.4163 0.4188 (3) 0.4791 0.4489

Acta Cryst. (2015). E71, 895-898

0.60067 (13) 0.61058 (15) 0.61090 (17) 0.6425 0.6242 0.69860 (14) 0.6866 0.7391 0.6719 0.69760 (17) 0.6882 0.7027 0.70498 (16) 0.6963 0.7113 0.75435 (16) 0.7686 0.7851 0.69576 (16) 0.7377 0.6759 0.69190 (15) 0.7158 0.7080 0.55167 (14) 0.5336 0.5951 0.54700 (14) 0.74310 (14) 0.7797 0.7309 0.66668 (17) 0.6605 0.6933 0.59161 (16) 0.61365 (16) 0.6318 0.5705 0.6271 0.52907 (14) 0.4854 0.5445 0.53720 (15) 0.5565 0.4939 0.55523 (19) 0.5607 0.5465

0.3315 (2) 1.0066 (2) 0.3229 (3) 0.3715 0.2523 0.7087 (3) 0.7715 0.7167 0.6963 0.4505 (3) 0.4741 0.3748 0.2085 (3) 0.1569 0.1714 0.5002 (3) 0.4661 0.4927 0.8932 (3) 0.8856 0.8260 0.9246 (3) 0.9874 0.8691 0.8624 (3) 0.9132 0.8725 0.3204 (3) 0.6123 (3) 0.6455 0.6472 0.9733 (3) 0.9446 1.0335 0.9887 (3) 0.9271 (3) 0.9797 0.9310 0.8587 0.8798 (3) 0.8837 0.9460 0.7553 (3) 0.7424 0.7485 0.3467 (4) 0.3289 0.4213

0.0342 (7) 0.0411 (7) 0.0410 (9) 0.049* 0.049* 0.0293 (7) 0.044* 0.044* 0.044* 0.0367 (8) 0.044* 0.044* 0.0360 (8) 0.043* 0.043* 0.0403 (9) 0.048* 0.048* 0.0377 (8) 0.045* 0.045* 0.0328 (7) 0.039* 0.039* 0.0293 (7) 0.035* 0.035* 0.0275 (7) 0.0327 (7) 0.039* 0.039* 0.0413 (9) 0.050* 0.050* 0.0329 (7) 0.0324 (7) 0.049* 0.049* 0.049* 0.0284 (7) 0.034* 0.034* 0.0305 (7) 0.037* 0.037* 0.0479 (10) 0.057* 0.057*

sup-3

supporting information C24 H24A H24B H24C C11 H11A H11B H11C C30 H30A H30B H30C C9 H9A H9B C10 H10A H10B C22 H22A H22B C23 H23A H23B H23C O6 H6

0.1992 (3) 0.1483 0.2504 0.1601 −0.1538 (3) −0.0989 −0.2235 −0.1579 1.0498 (3) 1.0688 1.0319 1.1107 −0.1671 (3) −0.1890 −0.2187 −0.0559 (3) −0.0069 −0.0570 0.3500 (3) 0.3258 0.3922 0.1972 (4) 0.2429 0.1306 0.1804 −0.05183 (18) −0.077 (4)

0.44301 (16) 0.4403 0.4102 0.4409 0.59608 (16) 0.5826 0.5977 0.5685 0.5726 (2) 0.5512 0.5443 0.5969 0.75993 (15) 0.7945 0.7556 0.76947 (14) 0.7806 0.8023 0.50443 (17) 0.5112 0.4674 0.65363 (17) 0.6759 0.6424 0.6783 0.49339 (9) 0.487 (2)

0.2775 (3) 0.3072 0.3028 0.2022 0.2335 (3) 0.2134 0.1726 0.2839 1.0638 (4) 1.0154 1.1049 1.1095 0.2679 (3) 0.2211 0.2975 0.3529 (3) 0.3228 0.3976 0.2862 (4) 0.2117 0.3055 0.3377 (4) 0.3998 0.3407 0.2768 0.54105 (19) 0.575 (4)

0.0406 (9) 0.061* 0.061* 0.061* 0.0401 (9) 0.060* 0.060* 0.060* 0.0552 (11) 0.083* 0.083* 0.083* 0.0423 (9) 0.051* 0.051* 0.0365 (8) 0.044* 0.044* 0.0467 (10) 0.056* 0.056* 0.0493 (11) 0.074* 0.074* 0.074* 0.0250 (5) 0.051 (14)*

Atomic displacement parameters (Å2)

I1 I2 Al1 O1 O3 N9 N2 N1 C1 O2 N4 N8 C7 O4 C12 N5 N6

U11

U22

U33

U12

U13

U23

0.04045 (13) 0.03502 (13) 0.0201 (4) 0.0197 (10) 0.0236 (10) 0.0238 (14) 0.0236 (13) 0.0178 (12) 0.0244 (15) 0.0300 (11) 0.0282 (13) 0.0378 (16) 0.0212 (14) 0.0349 (13) 0.0287 (16) 0.0233 (13) 0.0260 (13)

0.02150 (11) 0.04120 (13) 0.0147 (4) 0.0256 (11) 0.0202 (10) 0.0334 (15) 0.0222 (13) 0.0244 (13) 0.0104 (13) 0.0178 (10) 0.0160 (12) 0.0288 (15) 0.0189 (14) 0.0353 (13) 0.0257 (16) 0.0242 (13) 0.0184 (12)

0.02735 (12) 0.03083 (13) 0.0245 (5) 0.0251 (11) 0.0275 (12) 0.0315 (16) 0.0254 (14) 0.0290 (14) 0.0232 (16) 0.0282 (12) 0.0200 (13) 0.0464 (18) 0.0223 (15) 0.0415 (14) 0.0249 (17) 0.0285 (14) 0.0303 (14)

0.00304 (8) −0.00851 (9) 0.0025 (3) 0.0052 (8) 0.0074 (8) 0.0003 (11) −0.0010 (10) 0.0001 (10) −0.0008 (11) 0.0045 (9) −0.0007 (10) −0.0013 (12) 0.0017 (11) 0.0014 (10) −0.0043 (13) 0.0029 (11) 0.0018 (10)

0.01372 (10) 0.01468 (10) 0.0100 (4) 0.0056 (9) 0.0108 (9) 0.0117 (12) 0.0072 (11) 0.0064 (11) 0.0037 (13) 0.0109 (10) 0.0064 (11) 0.0292 (15) 0.0135 (13) 0.0261 (11) 0.0085 (14) 0.0099 (11) 0.0145 (12)

0.00282 (7) 0.00502 (9) 0.0015 (3) 0.0025 (9) 0.0007 (9) 0.0067 (12) 0.0015 (11) 0.0013 (11) −0.0004 (11) 0.0059 (9) 0.0000 (10) −0.0037 (13) 0.0023 (12) 0.0045 (11) −0.0061 (13) 0.0028 (11) −0.0012 (11)

Acta Cryst. (2015). E71, 895-898

sup-4

supporting information N3 C17 O5 C13 C5 C6 N7 N10 C20 C18 C14 C8 C15 C27 C26 C3 C19 C16 C28 C25 C29 C4 C2 C21 C24 C11 C30 C9 C10 C22 C23 O6

0.0251 (13) 0.0308 (18) 0.0497 (16) 0.0209 (14) 0.0252 (16) 0.0355 (18) 0.0409 (16) 0.0280 (15) 0.044 (2) 0.0308 (17) 0.0291 (17) 0.0393 (19) 0.048 (2) 0.044 (2) 0.0345 (18) 0.0224 (15) 0.0329 (17) 0.0379 (18) 0.0352 (19) 0.0358 (18) 0.0289 (17) 0.0254 (16) 0.0196 (15) 0.035 (2) 0.053 (2) 0.042 (2) 0.040 (2) 0.049 (2) 0.050 (2) 0.050 (2) 0.072 (3) 0.0320 (12)

0.0220 (13) 0.037 (2) 0.0426 (15) 0.0201 (14) 0.0335 (18) 0.0298 (17) 0.0289 (15) 0.055 (2) 0.0361 (19) 0.0279 (16) 0.048 (2) 0.0365 (19) 0.0300 (18) 0.0333 (19) 0.0314 (17) 0.0243 (16) 0.0280 (16) 0.0230 (16) 0.042 (2) 0.039 (2) 0.0383 (18) 0.0258 (16) 0.0310 (17) 0.052 (2) 0.0293 (18) 0.0320 (19) 0.069 (3) 0.0262 (18) 0.0159 (15) 0.038 (2) 0.0280 (19) 0.0162 (10)

0.0209 (13) 0.041 (2) 0.0432 (16) 0.0239 (15) 0.0347 (19) 0.0285 (18) 0.0452 (18) 0.0359 (17) 0.054 (2) 0.0266 (17) 0.0304 (19) 0.0217 (17) 0.047 (2) 0.039 (2) 0.0288 (18) 0.0317 (18) 0.0267 (17) 0.045 (2) 0.050 (2) 0.0252 (17) 0.0306 (18) 0.0260 (17) 0.0352 (19) 0.066 (3) 0.049 (2) 0.034 (2) 0.052 (3) 0.038 (2) 0.035 (2) 0.073 (3) 0.070 (3) 0.0356 (13)

−0.0004 (10) −0.0051 (15) 0.0126 (12) −0.0001 (11) −0.0034 (13) 0.0015 (14) −0.0031 (12) 0.0078 (14) −0.0123 (16) −0.0025 (13) 0.0161 (16) −0.0014 (15) 0.0204 (16) −0.0115 (16) −0.0045 (14) −0.0015 (12) 0.0003 (13) 0.0067 (14) −0.0098 (16) 0.0030 (15) −0.0023 (14) 0.0012 (13) 0.0003 (13) −0.0025 (17) −0.0092 (16) −0.0023 (15) 0.013 (2) 0.0098 (16) 0.0000 (14) 0.0029 (17) 0.0047 (18) 0.0016 (8)

0.0053 (11) 0.0025 (16) 0.0236 (13) 0.0142 (13) 0.0128 (14) 0.0146 (15) 0.0304 (15) 0.0106 (13) 0.0319 (19) 0.0105 (14) 0.0104 (15) 0.0041 (15) 0.0247 (19) 0.0213 (17) 0.0106 (15) 0.0032 (14) 0.0179 (14) 0.0250 (17) 0.0223 (18) 0.0150 (15) 0.0137 (15) 0.0043 (13) 0.0070 (14) 0.031 (2) 0.031 (2) 0.0050 (17) 0.016 (2) 0.0061 (18) 0.0113 (17) 0.047 (2) 0.052 (3) 0.0230 (11)

−0.0014 (10) −0.0028 (17) 0.0164 (12) 0.0033 (12) 0.0026 (14) 0.0014 (14) −0.0029 (13) 0.0061 (15) −0.0053 (17) −0.0029 (13) 0.0080 (16) 0.0080 (14) 0.0112 (16) −0.0041 (16) 0.0019 (14) 0.0001 (13) 0.0006 (13) −0.0010 (14) −0.0104 (18) 0.0072 (15) 0.0035 (15) 0.0041 (13) 0.0000 (14) 0.002 (2) −0.0088 (16) −0.0084 (15) 0.013 (2) 0.0123 (15) 0.0055 (14) −0.001 (2) 0.0048 (18) 0.0015 (9)

Geometric parameters (Å, º) Al1—O1 Al1—O2 Al1—O6 Al1—O3 Al1—O6i Al1—Al1i O1—C1 O3—C13 N9—C25 N9—C26 N9—C29 N2—C1 N2—C6

Acta Cryst. (2015). E71, 895-898

1.789 (2) 1.792 (2) 1.804 (2) 1.846 (2) 1.859 (2) 2.8831 (16) 1.290 (4) 1.282 (4) 1.353 (4) 1.452 (4) 1.452 (4) 1.324 (4) 1.457 (4)

C18—H18B C18—H18C C14—C15 C14—H14A C14—H14B C8—C9 C8—H8A C8—H8B C15—C16 C15—H15A C15—H15B C27—C26 C27—C28

0.9800 0.9800 1.509 (5) 0.9900 0.9900 1.507 (5) 0.9900 0.9900 1.501 (5) 0.9900 0.9900 1.500 (5) 1.502 (6)

sup-5

supporting information N2—C4 N1—C1 N1—C5 N1—C2 O2—C7 N4—C7 N4—C12 N4—C10 N8—C19 N8—C24 N8—C22 C7—N3 O4—C19 C12—H12A C12—H12B C12—H12C N5—C13 N5—C17 N5—C14 N6—C13 N6—C18 N6—C16 N3—C11 N3—C8 C17—H17A C17—H17B C17—H17C O5—C25 C5—H5A C5—H5B C5—H5C C6—H6A C6—H6B C6—H6C N7—C19 N7—C23 N7—C20 N10—C25 N10—C28 N10—C30 C20—C21 C20—H20A C20—H20B C18—H18A

1.485 (4) 1.340 (4) 1.458 (4) 1.471 (4) 1.274 (4) 1.339 (4) 1.454 (4) 1.471 (4) 1.356 (4) 1.457 (4) 1.464 (4) 1.330 (4) 1.251 (4) 0.9800 0.9800 0.9800 1.336 (4) 1.447 (4) 1.475 (4) 1.332 (4) 1.465 (4) 1.470 (4) 1.463 (4) 1.464 (4) 0.9800 0.9800 0.9800 1.237 (4) 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.356 (4) 1.454 (5) 1.465 (4) 1.368 (5) 1.444 (5) 1.459 (5) 1.504 (6) 0.9900 0.9900 0.9800

C27—H27A C27—H27B C26—H26A C26—H26B C3—C4 C3—C2 C3—H3A C3—H3B C16—H16A C16—H16B C28—H28A C28—H28B C29—H29A C29—H29B C29—H29C C4—H4A C4—H4B C2—H2A C2—H2B C21—C22 C21—H21A C21—H21B C24—H24A C24—H24B C24—H24C C11—H11A C11—H11B C11—H11C C30—H30A C30—H30B C30—H30C C9—C10 C9—H9A C9—H9B C10—H10A C10—H10B C22—H22A C22—H22B C23—H23A C23—H23B C23—H23C O6—Al1i O6—H6

0.9900 0.9900 0.9900 0.9900 1.502 (5) 1.503 (5) 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9800 0.9800 0.9800 0.9900 0.9900 0.9900 0.9900 1.503 (6) 0.9900 0.9900 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.506 (5) 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9800 0.9800 0.9800 1.859 (2) 0.73 (5)

O1—Al1—O2 O1—Al1—O6 O2—Al1—O6

104.24 (11) 115.18 (11) 139.96 (12)

C16—C15—H15B C14—C15—H15B H15A—C15—H15B

109.9 109.9 108.3

Acta Cryst. (2015). E71, 895-898

sup-6

supporting information O1—Al1—O3 O2—Al1—O3 O6—Al1—O3 O1—Al1—O6i O2—Al1—O6i O6—Al1—O6i O3—Al1—O6i O1—Al1—Al1i O2—Al1—Al1i O6—Al1—Al1i O3—Al1—Al1i O6i—Al1—Al1i C1—O1—Al1 C13—O3—Al1 C25—N9—C26 C25—N9—C29 C26—N9—C29 C1—N2—C6 C1—N2—C4 C6—N2—C4 C1—N1—C5 C1—N1—C2 C5—N1—C2 O1—C1—N2 O1—C1—N1 N2—C1—N1 C7—O2—Al1 C7—N4—C12 C7—N4—C10 C12—N4—C10 C19—N8—C24 C19—N8—C22 C24—N8—C22 O2—C7—N3 O2—C7—N4 N3—C7—N4 N4—C12—H12A N4—C12—H12B H12A—C12—H12B N4—C12—H12C H12A—C12—H12C H12B—C12—H12C C13—N5—C17 C13—N5—C14 C17—N5—C14 C13—N6—C18 C13—N6—C16 C18—N6—C16

Acta Cryst. (2015). E71, 895-898

92.39 (10) 92.99 (10) 92.13 (10) 101.27 (11) 90.04 (11) 76.16 (12) 164.83 (11) 113.09 (8) 118.65 (9) 38.76 (7) 130.21 (8) 37.40 (7) 145.4 (2) 144.0 (2) 123.0 (3) 119.2 (3) 117.4 (3) 121.6 (3) 122.3 (3) 116.0 (3) 122.3 (3) 121.6 (3) 116.1 (3) 119.2 (3) 119.0 (3) 121.7 (3) 154.7 (2) 120.8 (2) 121.9 (3) 115.6 (2) 119.0 (3) 121.8 (3) 115.7 (3) 118.8 (3) 120.3 (3) 121.0 (3) 109.5 109.5 109.5 109.5 109.5 109.5 120.3 (3) 122.9 (3) 115.2 (3) 120.9 (3) 121.1 (3) 117.6 (3)

C26—C27—C28 C26—C27—H27A C28—C27—H27A C26—C27—H27B C28—C27—H27B H27A—C27—H27B N9—C26—C27 N9—C26—H26A C27—C26—H26A N9—C26—H26B C27—C26—H26B H26A—C26—H26B C4—C3—C2 C4—C3—H3A C2—C3—H3A C4—C3—H3B C2—C3—H3B H3A—C3—H3B O4—C19—N8 O4—C19—N7 N8—C19—N7 N6—C16—C15 N6—C16—H16A C15—C16—H16A N6—C16—H16B C15—C16—H16B H16A—C16—H16B N10—C28—C27 N10—C28—H28A C27—C28—H28A N10—C28—H28B C27—C28—H28B H28A—C28—H28B O5—C25—N9 O5—C25—N10 N9—C25—N10 N9—C29—H29A N9—C29—H29B H29A—C29—H29B N9—C29—H29C H29A—C29—H29C H29B—C29—H29C N2—C4—C3 N2—C4—H4A C3—C4—H4A N2—C4—H4B C3—C4—H4B H4A—C4—H4B

109.8 (3) 109.7 109.7 109.7 109.7 108.2 109.9 (3) 109.7 109.7 109.7 109.7 108.2 110.8 (3) 109.5 109.5 109.5 109.5 108.1 120.6 (3) 120.9 (3) 118.5 (3) 108.7 (3) 109.9 109.9 109.9 109.9 108.3 112.2 (3) 109.2 109.2 109.2 109.2 107.9 121.0 (3) 122.1 (3) 116.9 (3) 109.5 109.5 109.5 109.5 109.5 109.5 110.1 (3) 109.6 109.6 109.6 109.6 108.1

sup-7

supporting information C7—N3—C11 C7—N3—C8 C11—N3—C8 N5—C17—H17A N5—C17—H17B H17A—C17—H17B N5—C17—H17C H17A—C17—H17C H17B—C17—H17C O3—C13—N6 O3—C13—N5 N6—C13—N5 N1—C5—H5A N1—C5—H5B H5A—C5—H5B N1—C5—H5C H5A—C5—H5C H5B—C5—H5C N2—C6—H6A N2—C6—H6B H6A—C6—H6B N2—C6—H6C H6A—C6—H6C H6B—C6—H6C C19—N7—C23 C19—N7—C20 C23—N7—C20 C25—N10—C28 C25—N10—C30 C28—N10—C30 N7—C20—C21 N7—C20—H20A C21—C20—H20A N7—C20—H20B C21—C20—H20B H20A—C20—H20B N6—C18—H18A N6—C18—H18B H18A—C18—H18B N6—C18—H18C H18A—C18—H18C H18B—C18—H18C N5—C14—C15 N5—C14—H14A C15—C14—H14A N5—C14—H14B C15—C14—H14B H14A—C14—H14B

Acta Cryst. (2015). E71, 895-898

120.4 (3) 122.3 (3) 116.2 (3) 109.5 109.5 109.5 109.5 109.5 109.5 119.3 (3) 120.2 (3) 120.5 (3) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 119.9 (3) 124.1 (3) 115.4 (3) 124.9 (3) 119.2 (3) 115.9 (3) 110.6 (3) 109.5 109.5 109.5 109.5 108.1 109.5 109.5 109.5 109.5 109.5 109.5 110.9 (3) 109.5 109.5 109.5 109.5 108.0

N1—C2—C3 N1—C2—H2A C3—C2—H2A N1—C2—H2B C3—C2—H2B H2A—C2—H2B C22—C21—C20 C22—C21—H21A C20—C21—H21A C22—C21—H21B C20—C21—H21B H21A—C21—H21B N8—C24—H24A N8—C24—H24B H24A—C24—H24B N8—C24—H24C H24A—C24—H24C H24B—C24—H24C N3—C11—H11A N3—C11—H11B H11A—C11—H11B N3—C11—H11C H11A—C11—H11C H11B—C11—H11C N10—C30—H30A N10—C30—H30B H30A—C30—H30B N10—C30—H30C H30A—C30—H30C H30B—C30—H30C C10—C9—C8 C10—C9—H9A C8—C9—H9A C10—C9—H9B C8—C9—H9B H9A—C9—H9B N4—C10—C9 N4—C10—H10A C9—C10—H10A N4—C10—H10B C9—C10—H10B H10A—C10—H10B N8—C22—C21 N8—C22—H22A C21—C22—H22A N8—C22—H22B C21—C22—H22B H22A—C22—H22B

110.1 (3) 109.6 109.6 109.6 109.6 108.2 109.9 (3) 109.7 109.7 109.7 109.7 108.2 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.4 (3) 109.8 109.8 109.8 109.8 108.2 110.6 (3) 109.5 109.5 109.5 109.5 108.1 109.6 (3) 109.7 109.7 109.7 109.7 108.2

sup-8

supporting information N3—C8—C9 N3—C8—H8A C9—C8—H8A N3—C8—H8B C9—C8—H8B H8A—C8—H8B C16—C15—C14 C16—C15—H15A C14—C15—H15A

109.7 (3) 109.7 109.7 109.7 109.7 108.2 109.0 (3) 109.9 109.9

N7—C23—H23A N7—C23—H23B H23A—C23—H23B N7—C23—H23C H23A—C23—H23C H23B—C23—H23C Al1—O6—Al1i Al1—O6—H6 Al1i—O6—H6

109.5 109.5 109.5 109.5 109.5 109.5 103.84 (12) 128 (4) 127 (4)

O2—Al1—O1—C1 O6—Al1—O1—C1 O3—Al1—O1—C1 O6i—Al1—O1—C1 Al1i—Al1—O1—C1 O1—Al1—O3—C13 O2—Al1—O3—C13 O6—Al1—O3—C13 O6i—Al1—O3—C13 Al1i—Al1—O3—C13 Al1—O1—C1—N2 Al1—O1—C1—N1 C6—N2—C1—O1 C4—N2—C1—O1 C6—N2—C1—N1 C4—N2—C1—N1 C5—N1—C1—O1 C2—N1—C1—O1 C5—N1—C1—N2 C2—N1—C1—N2 O1—Al1—O2—C7 O6—Al1—O2—C7 O3—Al1—O2—C7 O6i—Al1—O2—C7 Al1i—Al1—O2—C7 Al1—O2—C7—N3 Al1—O2—C7—N4 C12—N4—C7—O2 C10—N4—C7—O2 C12—N4—C7—N3 C10—N4—C7—N3 O2—C7—N3—C11 N4—C7—N3—C11 O2—C7—N3—C8 N4—C7—N3—C8 Al1—O3—C13—N6 Al1—O3—C13—N5 C18—N6—C13—O3

−133.5 (4) 39.4 (4) 132.8 (4) −40.5 (4) −3.2 (4) 117.8 (3) 13.4 (4) −126.8 (3) −87.8 (5) −118.8 (3) −94.1 (4) 88.0 (4) −0.1 (4) −176.1 (3) 177.7 (3) 1.7 (4) −2.8 (4) 178.6 (3) 179.4 (3) 0.8 (4) −104.2 (5) 86.0 (5) −10.9 (5) 154.2 (5) 129.0 (5) −101.8 (5) 79.3 (6) 11.5 (4) 176.0 (3) −167.3 (3) −2.8 (4) −6.0 (4) 172.9 (3) −173.3 (3) 5.6 (4) −117.6 (3) 63.2 (4) 2.6 (4)

C17—N5—C14—C15 C7—N3—C8—C9 C11—N3—C8—C9 N5—C14—C15—C16 C25—N9—C26—C27 C29—N9—C26—C27 C28—C27—C26—N9 C24—N8—C19—O4 C22—N8—C19—O4 C24—N8—C19—N7 C22—N8—C19—N7 C23—N7—C19—O4 C20—N7—C19—O4 C23—N7—C19—N8 C20—N7—C19—N8 C13—N6—C16—C15 C18—N6—C16—C15 C14—C15—C16—N6 C25—N10—C28—C27 C30—N10—C28—C27 C26—C27—C28—N10 C26—N9—C25—O5 C29—N9—C25—O5 C26—N9—C25—N10 C29—N9—C25—N10 C28—N10—C25—O5 C30—N10—C25—O5 C28—N10—C25—N9 C30—N10—C25—N9 C1—N2—C4—C3 C6—N2—C4—C3 C2—C3—C4—N2 C1—N1—C2—C3 C5—N1—C2—C3 C4—C3—C2—N1 N7—C20—C21—C22 N3—C8—C9—C10 C7—N4—C10—C9

−174.3 (3) −32.0 (4) 160.2 (3) −49.1 (4) 36.6 (4) −151.0 (3) −54.5 (4) 12.2 (5) 170.1 (3) −169.3 (3) −11.4 (5) −6.2 (5) −176.9 (3) 175.3 (3) 4.6 (5) −39.2 (4) 147.6 (3) 57.8 (4) −15.1 (5) 165.3 (3) 44.8 (4) 174.5 (3) 2.3 (5) −5.6 (5) −177.9 (3) 173.8 (4) −6.6 (6) −6.1 (5) 173.6 (3) 23.8 (4) −152.4 (3) −50.2 (4) −28.5 (4) 152.8 (3) 52.6 (4) 49.4 (5) 53.8 (4) 27.0 (4)

Acta Cryst. (2015). E71, 895-898

sup-9

supporting information C16—N6—C13—O3 C18—N6—C13—N5 C16—N6—C13—N5 C17—N5—C13—O3 C14—N5—C13—O3 C17—N5—C13—N6 C14—N5—C13—N6 C19—N7—C20—C21 C23—N7—C20—C21 C13—N5—C14—C15

−170.4 (3) −178.1 (3) 8.9 (4) 15.7 (4) −179.4 (3) −163.6 (3) 1.3 (4) −24.8 (5) 164.2 (4) 20.1 (4)

C12—N4—C10—C9 C8—C9—C10—N4 C19—N8—C22—C21 C24—N8—C22—C21 C20—C21—C22—N8 O1—Al1—O6—Al1i O2—Al1—O6—Al1i O3—Al1—O6—Al1i O6i—Al1—O6—Al1i

−167.7 (3) −51.7 (4) 37.6 (5) −163.8 (3) −55.5 (5) −96.12 (13) 73.02 (19) 170.23 (12) 0.000 (1)

Symmetry code: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, º) D—H···A i

O6—H6···O4 C5—H5B···I2 C6—H6B···O5ii C12—H12A···O1 C12—H12B···I1iii C14—H14A···I2iv C17—H17B···I1iv C16—H16A···I1iii C24—H24A···O3i C28—H28B···I2v C30—H30A···O5vi

D—H

H···A

D···A

D—H···A

0.73 (5) 0.98 0.98 0.98 0.98 0.99 0.98 0.99 0.98 0.99 0.98

1.91 (5) 3.01 2.21 2.59 3.09 3.15 3.05 3.11 2.57 3.09 2.57

2.625 (3) 3.987 (3) 3.190 (4) 3.561 (4) 4.051 (3) 4.070 (4) 4.015 (4) 3.932 (4) 3.482 (5) 3.981 (4) 3.404 (5)

167 (5) 172 174 173 167 156 169 141 154 150 143

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) x−1/2, −y+3/2, z+1/2; (iv) x−1, y, z; (v) x+1/2, −y+3/2, z+1/2; (vi) −x+2, −y+1, −z+2.

Acta Cryst. (2015). E71, 895-898

sup-10

Crystal structure of hexa-kis-(dmpu)-di-μ2-hydroxido-dialuminium tetraiodide dmpu tetra-solvate [dmpu is 1,3-di-methyl-tetra-hydro-pyrimidin-2(1H)-one]: a centrosymmetric dinuclear aluminium complex containing AlO5 polyhedra. - PDF Download Free (2024)

References

Top Articles
How many medals does Team USA have at the Paris Olympics? See the count
An armchair guide to watching the Olympic opening cermony
Barstool Sports Gif
Bank Of America Financial Center Irvington Photos
Frases para un bendecido domingo: llena tu día con palabras de gratitud y esperanza - Blogfrases
Bubble Guppies Who's Gonna Play The Big Bad Wolf Dailymotion
Fort Morgan Hometown Takeover Map
Craigslist Home Health Care Jobs
Southside Grill Schuylkill Haven Pa
Beautiful Scrap Wood Paper Towel Holder
Pickswise the Free Sports Handicapping Service 2023
Derpixon Kemono
Nichole Monskey
Mens Standard 7 Inch Printed Chappy Swim Trunks, Sardines Peachy
Caliber Collision Burnsville
978-0137606801
Conscious Cloud Dispensary Photos
Lake Nockamixon Fishing Report
Cpt 90677 Reimbursem*nt 2023
Rams vs. Lions highlights: Detroit defeats Los Angeles 26-20 in overtime thriller
Clear Fork Progress Book
Walmart stores in 6 states no longer provide single-use bags at checkout: Which states are next?
Cta Bus Tracker 77
18889183540
EASYfelt Plafondeiland
Shadbase Get Out Of Jail
Mynahealthcare Login
Mchoul Funeral Home Of Fishkill Inc. Services
Wcostream Attack On Titan
15 Downer Way, Crosswicks, NJ 08515 - MLS NJBL2072416 - Coldwell Banker
Aladtec Login Denver Health
140000 Kilometers To Miles
MethStreams Live | BoxingStreams
De beste uitvaartdiensten die goede rituele diensten aanbieden voor de laatste rituelen
Vitals, jeden Tag besser | Vitals Nahrungsergänzungsmittel
THE 10 BEST Yoga Retreats in Konstanz for September 2024
Eleceed Mangaowl
Pensacola Cars Craigslist
Spn-523318
Skip The Games Grand Rapids Mi
Wayne State Academica Login
LoL Lore: Die Story von Caitlyn, dem Sheriff von Piltover
Craigslist/Nashville
Avatar: The Way Of Water Showtimes Near Jasper 8 Theatres
Gw2 Support Specter
Craigslist Sparta Nj
Sams Gas Price San Angelo
Legs Gifs
Electric Toothbrush Feature Crossword
Hampton Inn Corbin Ky Bed Bugs
How To Find Reliable Health Information Online
Room For Easels And Canvas Crossword Clue
Latest Posts
Article information

Author: Fr. Dewey Fisher

Last Updated:

Views: 6269

Rating: 4.1 / 5 (42 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Fr. Dewey Fisher

Birthday: 1993-03-26

Address: 917 Hyun Views, Rogahnmouth, KY 91013-8827

Phone: +5938540192553

Job: Administration Developer

Hobby: Embroidery, Horseback riding, Juggling, Urban exploration, Skiing, Cycling, Handball

Introduction: My name is Fr. Dewey Fisher, I am a powerful, open, faithful, combative, spotless, faithful, fair person who loves writing and wants to share my knowledge and understanding with you.